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Abstract: Recent studies suggest that sleep-mediated consolidation processes help adults
learn non-native speech sounds. However, overnight improvement was not seen when partici-
pants learned in the morning, perhaps resulting from native-language interference. The
current study trained participants to perceive the Hindi dental/retroflex contrast in the morn-
ing and tested whether increased training can lead to overnight improvement. Results showed
overnight effects regardless of training amount. In contrast to previous studies, participants in
this study heard sounds in limited contexts (i.e., one talker and one vowel context), corrobo-
rating other findings, suggesting that overnight improvement is seen in non-native phonetic
learning when variability is limited. VC 2020 Acoustical Society of America
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1. Introduction

Learning to perceive speech sounds in a second language is difficult for adults, especially when
second-language speech sounds are perceptually similar to native-language speech sounds (e.g.,
Best et al., 2001). Recent work has shown that sleep can help learners consolidate perceptually
learned non-native speech sounds into long-term memory (Earle and Myers, 2015a; Earle et al.,
2017; see Earle and Myers, 2014, for review), recover learned speech information that had been
interfered with through throughout the day (Fenn et al., 2003), and generalize their knowledge of
new speech categories to a new talker (Earle and Myers, 2015b; Fenn et al., 2013). However,
there may be some limitations to the benefits of sleep for non-native speech sound learning.
Specifically, Earle and Myers (2015a) trained two groups (one in the evening and another in the
morning) on the voiced dental and retroflex stop consonants found in Hindi (a difficult contrast
for English speakers; Best et al., 2001). Participants returned for testing approximately 12 and
24 h later. Participants who learned in the evening improved after sleep, but those who learned in
the morning did not. They argued that this was a result of interference from the native language
before sleep: Morning-trained participants likely heard and produced a great deal of native-
language speech sounds before sleeping, and hearing native-language speech tokens (especially
those that are perceptually similar to the non-native sounds being learned) may have destabilized
memory traces of the non-native speech sounds and attenuated behavioral improvements that
result from sleep consolidation processes. Qin and Zhang (2019) found similar results on a non-
native tone learning task. They found that, at least for the trained identification task, evening-
trained participants improved marginally after sleep, but those trained in the morning did not.
Both of these studies suggest that memory traces of non-native speech sounds may decay or be
interfered with, but that sleep may help restore or protect memory traces from interference (simi-
lar to findings from Fenn et al., 2003). In addition, these studies suggest that proximity to sleep
is important for learning.

1.1 Interference in memory consolidation

Poor maintenance of phonetic information could result from weaker encoding of memory traces of
the sounds or interference during a critical stabilization period after learning (see Fuhrmeister,
2019, for review). For instance, theories of consolidation by M€uller and Pilzecker (1900) and
Walker (2005) both suggest that newly formed memory traces need to undergo a stabilization
phase. In Walker’s (2005) model, stabilization relies on the passage of time, but task improvement
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results from a subsequent phase of consolidation that relies on sleep. Related to this idea, research
from many domains suggests that consolidation in part depends on how strongly information is
encoded during learning (e.g., Ebbinghaus, 1885; Hauptmann et al., 2005). Shibata et al. (2017)
had participants perform two similar visual learning tasks consecutively. This often causes the
learner to forget what they learned on the first task when tested after a delay, due to interference
from the second task (e.g., Brashers-Krug et al., 1996). In Shibata et al. (2017), one group of par-
ticipants overlearned the first task (continued to practice the task even after it was mastered) and
one group did not. The group that overlearned showed no interference effects from the second
task when tested the next day, whereas the group who practiced the task for the typical amount of
time did experience interference (i.e., they showed weaker learning of the first task). These theories
and empirical findings suggest that newly formed memory traces can be disrupted by what hap-
pens after learning, but interference may be mitigated if information is encoded strongly to begin
with, or “overlearned.” Testing whether theories of consolidation can be applied to non-native
speech sound learning is both of theoretical and practical importance: Many second-language
courses take place in the morning hours when learners will immediately leave the classroom and
hear and speak their native language. Therefore, it is important to identify ways, such as over-
learning, to mitigate interference effects. From a theoretical standpoint, testing predictions from
the memory consolidation literature can shed light on whether some of the challenges of non-
native speech sound learning stem from failures of consolidation.

1.2 Current study

The current study draws from the consolidation literature and tests the hypothesis that partici-
pants who learn a difficult non-native phonetic contrast in the morning hours [as in Earle and
Myers (2015a), where these participants did not improve after sleep] will indeed show overnight
improvement if they overlearn the phonetic contrast (as in Shibata et al., 2017). We trained two
groups of participants on the Hindi dental/retroflex contrast in the morning, with reassessments
approximately 12 and 24 h later. We based the number of training trials on pilot testing which
suggested that performance tended to asymptote at about 300 trials. To ensure that both over-
learning and non-overlearning training groups had an equal opportunity to learn, we set the non-
overlearning group at 300 trials [similar to training amounts in Earle and Myers (2015a) and
Fuhrmeister and Myers (2020)], and following methods in Shibata et al. (2017), added 20 min of
additional training for the overlearning group (800 trials total). Based on Earle and Myers
(2015a), we predicted that the non-overlearning group would not show improvement after the
overnight interval. If the overlearning group does improve after sleep, this would support the
idea that strong initial encoding of memory traces is important for sleep-mediated consolidation
processes and that it might be sufficient to mitigate interference caused by exposure to native-
language speech sounds. If neither group shows overnight improvement, this would suggest that
the time of day of initial learning may be more important for consolidation-based improvements
rather than how strongly the information is learned.

2. Method

2.1 Participants

Sixty-three participants (17 male, 46 female, ages 18–34) were recruited from the University of
Connecticut community and the Psychology Department participant pool. Participants were
monolingual native speakers of North American English with no history of speech, hearing, or
language disorders. Five participants were eliminated for not completing all sessions, two because
of missing data files, two for previous exposure to speech sounds in Hindi, and two who reported
that they were not native speakers of English. Data from the remaining 52 participants (over-
learning¼ 29, non-overlearning¼ 23) are included in the analyses reported. Participants gave
informed consent according to the University of Connecticut Institutional Review Board and
were paid $10 per hour or received course credit for participation.

2.2 Stimuli

Experimental stimuli were presented using OpenSesame experiment presentation software
(Mathôt et al., 2012). Auditory stimuli were presented using over-ear headphones (SONY
MDR-7506, New York), and participants could adjust the volume to a comfortable level.
Auditory stimuli were five acoustically unique recordings each of /˜ug/ and /d9ug/ recorded by a
female native speaker of Hindi and scaled to mean amplitude of 65 dB in Praat (Boersma and
Weenink, 2018). Visual stimuli were two novel objects (stimulus images courtesy of Michael J.
Tarr, Center for the Neural Basis of Cognition and Department of Psychology, Carnegie
Mellon University, http://www.tarrlab.org/). Participants responded via key press.
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2.3 Procedure

Participants visited the lab three times (see Fig. 1). We trained all participants in the morning
hours to test whether overlearning would facilitate overnight improvement (or would mitigate
native-language interference that participants experienced throughout the day). The first visit
took place between 8:00 and 10:00 a.m., the second on the same day between 5:00 and 9:00
p.m., and the third the following morning between 8:00 and 10:00 a.m. The first session included
an AX discrimination test (same/different judgment) to measure baseline discrimination of the
contrast, identification training, an identification assessment, and a post-training AX discrimina-
tion assessment. The second and third sessions consisted of reassessments of identification and
AX discrimination.

2.4 Training and assessments

AX discrimination. Participants heard two tokens (e.g., /˜ug/ and /d9ug/) in a row with a 1 s inter-
stimulus interval (64 trials). Half of the trials contained tokens from the same category, and half
contained trials from different categories. Same-category trials always contained two acoustically
distinct recordings.
Identification training and test. For the identification tasks, participants heard one auditory token
and were asked to choose one of two novel visual objects. Before training, participants saw one
object at a time on the screen and heard five examples of the corresponding auditory stimulus to
learn the stimulus pairings. The non-overlearning group completed 300 identification training
trials (about 10–15 min of practice), and the overlearning group completed 800 trials (approxi-
mately 20 min of extra training). Participants received visual feedback on each trial during training
(e.g., “Correct!” or “Incorrect”). Identification assessments consisted of 50 trials without feedback.
Identification and discrimination assessments were used in tandem, as these tasks may differ in
overnight consolidation patterns (e.g., Earle and Myers, 2015a; Qin and Zhang, 2019; see Earle
and Myers, 2014, for a discussion).

2.5 Analysis approach

For analyses of discrimination, d0 scores were calculated for each participant to minimize
response bias (MacMillan and Creelman, 2005). The d0 scores served as the dependent variable
in a linear mixed effects model. Identification data were analyzed using mixed effects logistic
regression models.1 Analyses were performed in R (R Development Core Team, 2008), and
mixed effects models were fit with the lme4 package (Bates et al., 2015). For linear mixed effects
models, p-values were estimated using the Satterthwaite approximation with the afex package
(Singmann et al., 2019). For analyses of identification data, a backwards stepping procedure was
used to determine the random effects structure that best fit the data (Matuschek et al., 2017).
Raw data and analysis scripts can be found at https://osf.io/hm24w/.2

3. Results

3.1 Discrimination

First, we analyzed data from the discrimination task to test for learning immediately after train-
ing, and maintenance or improvement over the two post-tests. The dependent variable was the d0

score, and fixed effects included factors for time (pretest, immediate post-test, evening post-test,
and next-morning post-test) and group (overlearning and non-overlearning). To test for group
differences, the factor group was deviation coded (overlearning¼�0.5, non-overlearning¼ 0.5).
To test for group differences over time, we employed backwards difference coding using the con-
t.sdif() function in the MASS package to test the following contrasts: immediate post-test–pretest
(improvement after training), evening post-test–immediate post-test (maintenance over the day),
and next-morning post-test–evening post-test (overnight improvement). Random intercepts for

Fig. 1. (Color online) Schematic of experiment procedure for overlearning and non-overlearning groups. Procedure was iden-
tical except for the number of training trials groups completed.
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participants were included. The model revealed a significant difference between the pretest and
immediate post-test, b¼ 0.63, SE¼ 0.11, t¼ 5.60, p< 0.001, which means that, overall, participants
improved as a result of training. No difference was seen between the immediate post-test and the
evening post-test, suggesting that participants maintained training-induced gains over the course of
the day. A significant difference was found between the evening post-test and next-morning post-
test, b¼ 0.27, SE¼ 0.11, t¼ 2.35, p¼ 0.02, which indicates that performance improved overnight.
No group differences or interactions were found, suggesting that the extra training did not result
in superior learning, maintenance, or consolidation of the sounds (see Fig. 2).

3.2 Identification

Next, we turn to an analysis of the identification task, which was the task that was explicitly
trained in this study. The dependent variable of this model was the log odds of selecting a correct
response on each trial, and fixed effects included time (immediate post-test, evening post-test, and
next-morning post-test) and group (overlearning and non-overlearning, coded as in discrimina-
tion analysis). Time was backwards difference coded to compare contrasts of evening post-
test–immediate post-test (maintenance over the day) and next-morning post-test–evening post-test
(overnight improvement). The random effects structure in the final model included by-subject
random intercepts. The model revealed a significant difference only between the evening post-test
and the next-morning post-test, b¼ 0.16, SE¼ 0.07, z¼ 2.13, p¼ 0.03, which suggests that perfor-
mance improved overnight. We observed no effect of group and no interactions, suggesting that
the groups did not differ in their identification performance at any time point or in their degree
of overnight improvement (see Fig. 2).

3.3 Bayesian analyses of discrimination and identification

Null effects in frequentist analyses are difficult to interpret; one cannot validly conclude that a
lack of a significant difference between conditions is evidence for the absence of a difference.
However, Bayesian approaches do allow one to provide evidence for the lack of an effect
using Bayes factor analyses (Kass and Raftery, 1995; Kruschke, 2015). Bayes factors quantify
the relative evidence for the null hypothesis (e.g., no difference between overlearning and non-
overlearning) compared to the alternative hypothesis (e.g., a difference between groups). To
take advantage of this, we reanalyzed the discrimination and identification data using
Bayesian mixed effects models. The results were fully compatible with the results of the
frequentist analysis reported here. The Bayes factor analyses revealed no support for group
differences and no evidence for an interaction with time. See supplementary material for a
detailed description of the Bayesian analyses.2

4. Discussion

The goal of the current study was to test whether overlearning a difficult non-native speech con-
trast would help participants capitalize on sleep-dependent consolidation processes and improve
after sleep as compared to a group that did not overlearn. We found that, overall, participants
improved after training on the discrimination task, maintained these gains throughout the day,
and, in contrast to prior work from our lab and others, also improved on both discrimination
and identification of the contrast after sleeping. Surprisingly, overlearning the non-native contrast
with an additional 20 min of training did not confer any benefits above and beyond the shorter
amount of training. A possible explanation is that although our chosen way of manipulating

Fig. 2. (Color online) Identification and discrimination performance by group at each time point. Participants improved after
training on the discrimination task, maintained training-induced gains on identification and discrimination measures, and
improved after a period of sleep on both discrimination and identification. No group differences or interactions were found.
Error bars indicate 95% confidence intervals.
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overlearning followed prior literature (Shibata et al., 2017), there are many potential ways to test
whether overlearning supports consolidation. For example, future research could calibrate the
amount of training to the individual (i.e., have each participant practice until some threshold is
reached, and then overlearn). It is still of interest that, in contrast to Earle and Myers (2015a)
and Qin and Zhang (2019), we saw an increase in performance following the overnight interval
when participants were trained in the morning, as indicated by the effects of time in both the dis-
crimination and identification analyses. We discuss potential reasons for this below.

4.1 Destabilization of memory traces as a result of phonological variability

One key difference between the current study and Earle and Myers (2015a) is that participants in
Earle and Myers (2015a) were additionally tested on the sounds they learned in the context of an
untrained vowel, and in the current study, participants only heard the sounds presented in one
vowel context. Similarly, Qin and Zhang (2019) tested generalization of tone learning to a non-
native talker. This suggests that exposure to variability, either in the form of multiple phonologi-
cal contexts or multiple talkers, may destabilize learning to the point that task improvement as a
result of sleep-dependent consolidation does not occur (as in Fuhrmeister and Myers, 2017). The
current study and others have shown overnight improvement when phonological variability in
test and training is limited (Earle et al., 2017; Fuhrmeister and Myers, 2017), whereas findings of
improvement after sleep in studies that included phonological variability in training or test are
inconsistent (Earle and Myers, 2015a; Fuhrmeister and Myers, 2017, 2020). This idea may be
counterintuitive because several studies have found that exposure to variability in non-native
phonetic training is beneficial for learning and generalization (e.g., Lively et al., 1993). However,
in many of these studies, participants engaged in many training sessions over several weeks. In
this case, variability is likely helpful, but in situations where large doses of training are not possi-
ble, it is of interest to understand how stability of learning (which seems to be influenced by
exposure to variability) interacts with memory consolidation.

The current findings add to our understanding of sleep-dependent memory consolidation
and interference in memory consolidation of non-native speech sounds in two important ways.
First, they bolster arguments for sleep made by Earle and Myers (2014, 2015a) and Earle et al.
(2017). Based on the findings of Earle and Myers (2015a) alone, it was hard to make the argu-
ment that sleep per se resulted in task improvement after a period of sleep because this was only
seen in participants who trained during the evening hours. The current study suggests that over-
night improvement is possible when participants learn in the morning hours and that limited
phonological variability during testing or training may be a more reliable predictor of overnight
improvement than native-language exposure, as was found in Earle and Myers (2015a). Second,
the current findings add to a growing body of evidence in the domain of non-native speech sound
learning that suggests that stability or strength of learning is important for consolidation-based
improvements after sleep and that there may be multiple ways to achieve stability in learning.
For example, the current study, combined with evidence from Fuhrmeister and Myers (2017)
suggests that limiting phonological variability in training and testing can stabilize learning, and
findings from Earle and Myers (2015a) and Qin and Zhang (2019) suggest that sleeping soon
after information is learned can have a stabilizing effect. These findings are consistent with
domain-general models of memory consolidation that posit that strong initial learning
(Ebbinghaus, 1885) or stabilization of memory traces is necessary for task improvement during
sleep (M€uller and Pilzecker, 1900; Walker, 2005). An open question is whether overlearning
could help mitigate interference from variability that is induced by training or testing on addi-
tional vowel contexts or talkers, and we suggest that future research address this question.
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