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REGULAR ARTICLE

Behavioural and EEG evidence for inter-individual variability in late encoding
stages of word production
Pamela Fuhrmeistera, Sylvain Madeca, Antje Lorenzb, Shereen Elbuy a and Audrey Bürkia

aDepartment of Linguistics, University of Potsdam Potsdam, Germany; bDepartment of Psychology, Neurocognitive Psychology,
Humboldt-Universität zu Berlin Berlin, Germany

ABSTRACT
Individuals differ in the time needed to name a picture. This contribution asks whether this inter-
individual variability emerges in earlier stages of word production (e.g. lexical selection) or later
stages (e.g. articulation) and examines the consequences of this variability for EEG group results.
We measured participants’ (N = 45) naming latencies and continuous EEG in a picture-
word interference task and naming latencies in a delayed naming task. Inter-individual variability
in naming latencies in immediate naming (in contrast with inter-item variability) was not larger
than the variability in the delayed task, suggesting that some variability in immediate naming
originates in later stages of word production. EEG data complemented this interpretation:
Differences between relatively fast vs. slow speakers emerged in response-aligned analyses in a
time window close to the vocal response. We additionally present a method to assess the
generalisability of the timing of effects across participants based on random sampling.
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The aim of psycholinguistics is to describe the cognitive
system that allows individuals to produce and compre-
hend language. Work in the field (as in cognitive psy-
chology in general) rests on an important assumption,
which is reflected in the methodological approach.
This assumption is that a common (universal) architec-
ture is reflected in the group behaviour. Inter-individual
differences in behaviour are acknowledged, but the
assumption is that the common architecture will be
visible when filtering out the noise, i.e. inter-individual
differences. In the present study, we take a different
stance. We join a marginal but perhaps increasing
number of studies that examine how inter-individual
differences contribute to—and sometimes prevent—a
better understanding of word production processes.

We bring together two literatures, both in the field of
language production, that make opposite assumptions
about inter-individual differences in the time course of
language production processes. The first assumes that
speakers differ in the time they need to perform
specific encoding processes (e.g. Jongman et al., 2015;
Laganaro et al., 2012; Shao et al., 2012). The second
assumes (albeit implicitly) that encoding processes are
synchronous enough across speakers, such that the
underlying processes can be targeted with time course

measures, e.g. event-related potentials (ERPs, e.g. Bürki,
2017b; Krott et al., 2019; Rabovsky et al., 2021). The
first aim of this study is to determine where in the
time course of word production these inter-individual
differences in naming latencies (time to prepare the
vocal response to name a picture of an object)
emerge. The functional origin of inter-individual differ-
ences in word production processes has crucial theoreti-
cal and methodological implications. Inter-individual
differences in the timing of encoding processes may
render the interpretation of time sensitive measures,
such as ERPs, imprecise. The second aim of this study
is precisely to examine the consequences of inter-indi-
vidual variability on group results in ERP studies. Theor-
etical and methodological implications of inter-
individual differences in the timing of encoding pro-
cesses, as well as relevant literature, are discussed below.

Theoretical implications of individual differences
in word production

Although speaking often seems effortless (at least for
adults without language impairment), it is not a simple
task. According to prominent models of word pro-
duction, the process of producing a single word is
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made up of several stages: conceptualisation, lexical
selection, phonological encoding, phonetic encoding
and execution of articulatory gestures (e.g. Indefrey &
Levelt, 2004; Indefrey, 2011; Levelt, 1999). Producing
words is not an entirely automatic process, and it is at
least partially subject to cognitive resources (e.g. atten-
tional control, Piai et al., 2013). Authors typically
assume that the encoding processes involved in word
production differ in their degree of automaticity, and
as a consequence, in the extent to which they rely on
available cognitive resources. The lack of automaticity
of (a subset of) encoding processes and their reliance
on cognitive resources has often been linked to the
variability observed in the time needed to encode a
vocal response in the naming task. This variability is sub-
stantial. In our own work, we have observed mean
naming latencies that have ranged between 613 and
1070 ms in a simple picture naming experiment
(Valente et al., 2014) and between 615 and 924 ms in a
picture-word interference task (Bürki, 2017a). The large
standard deviations reported in most studies corrobo-
rate our observations that variability in naming times
across participants is substantial.

If certain stages of word production proceed less
automatically and instead are susceptible to influences
from cognitive resources, we would expect to observe
inter-individual differences in these stages, for
example, in the time it takes an individual to select a
word during the lexical access stage (see for instance
Laganaro et al., 2012). On the other hand, if some
stages of word production proceed automatically, we
would not expect much individual variability to
emerge in these stages. Understanding this variability
(and being able to locate it in the speech production
system) will inform us on crucial aspects of this system:
its links with cognitive resources, autonomy of the
language system, and the degree of automaticity in
word production processes.

There is currently no consensus as to which processes
or stages of word production are more or less automatic
(or variable), despite the number of studies that have
addressed this question (see Garrod & Pickering, 2007;
Hartsuiker & Moors, 2017; Jongman et al., 2015; Meyer
et al., 2007; Roelofs, 2008). For example, some authors
have found evidence of inter-individual differences in
later stages of word production, such as phonetic encod-
ing or execution, by correlating measures of attention
with word production speed (Jongman et al., 2015).
However, others have found evidence of individual
variability at earlier stages, such as conceptualisation
(e.g. Shao et al., 2012) or lexical selection (Ferreira &
Pashler, 2002). A few EEG studies additionally suggest
that individuals vary in their speed of lexical selection

(e.g. Laganaro et al., 2012; Shao et al., 2014). For instance,
Laganaro et al. (2012) compared ERPs, both aligned on
the picture presentation and on the vocal response, of
slow and fast speakers. They found differences across
speed groups only between 200 and 300 ms after
picture onset, a time window they relate to lexical selec-
tion (but see below).

Taken together, these findings confirm that word pro-
duction is not an entirely automatic process and that
participants vary in the time it takes them to prepare a
linguistic response for production. However, the locus
of this variability is not yet well understood, i.e. we still
do not have a complete picture of where in the
process of word production participants are most vari-
able. In most studies, the link between variability
observed in the behaviour of participants and a
specific encoding process requires additional assump-
tions (e.g. semantic interference reflects lexical access,
Ferreira & Pashler, 2002; gaze durations reflect phonolo-
gical encoding, Jongman et al., 2015; name agreement
effects only arise during lexical access, Shao et al.,
2014). More research is clearly needed to clarify this
issue (see also commentary by Laganaro, 2016). As dis-
cussed in the next section, the locus of this inter-individ-
ual variability may have important methodological
consequences for studying the time course of word
production.

Methodological implications of individual
variability in the time course of word production

In the last ten years, an increasing number of studies have
used measurements with high temporal resolution, such
as MEG or EEG, to examine word production processes
(e.g. Ganushchak et al., 2011; Munding et al., 2015; Strij-
kers et al., 2010). Several contemporary issues require
fine grained information about the time course of
events, i.e. how the activation flows in the system or
the degree of seriality of encoding processes (e.g. sequen-
tially vs. parallelism in underlying encoding processes,
Costa et al., 2009; Miozzo et al., 2015; Munding et al.,
2015; Riès, 2016). Measures with high temporal precision,
such as EEG or MEG, can be used for these purposes.
However, temporal precision in EEG and MEG can only
be achieved if neural activity is synchronous across par-
ticipants. Observed differences in response times,
together with claims that encoding processes involve
domain-general cognitive resources whose availability
varies among individuals (see above), are difficult to
reconcile with this synchronicity assumption.

As reviewed above, several studies argue that partici-
pants vary in the time they need to access lexical rep-
resentations. This claim has crucial implications for EEG
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studies. The cognitive processes underlying language
production are not signalled by well-known com-
ponents, as can be the case in other fields (e.g. N400
and P600 in language comprehension, N170 in face pro-
cessing). As a result, the time course of experimental
effects is often taken as an indicator of underlying
encoding processes. For instance, the estimates of the
time course (onset, duration) of encoding processes
(i.e. conceptualisation, lexical access, phonological
encoding) provided by Indefrey (2011) or Indefrey and
Levelt (2004) in their meta-analyses are often used to
map experimental effects with underlying cognitive pro-
cesses. According to these authors, in an experimental
setup where participants need to produce the name of
a picture, assuming several repetitions of the same
word and a reaction time of 600 ms, it is estimated
that visual recognition and conceptualisation occur up
until 175–200 ms after visual onset. Lemma selection
then takes place from 200 ms until about 275 ms and
is followed by encoding of the phonological form
between 275 and 450 ms after picture onset. Finally,
phonetic encoding occurs around 450–600 ms, until
the initiation of motor execution (Indefrey & Levelt,
2004). Many studies use this time course to map a
given effect to a given encoding process (e.g. if the
effect arises at around 250 ms, it is therefore associated
with lexical access). If participants indeed vary in the
time they need to complete lexical access (or phonologi-
cal encoding), this general time course cannot be
assumed to generalise across studies that use different
groups of participants. Some researchers rescale this
time frame proposed by Indefrey and Levelt (2004) to
fit longer or shorter response times (see for example
Shitova et al., 2017). To accurately rescale these time
frames, however, we need to determine whether faster
speakers are faster in all stages of word production
(e.g. Schuhmann et al., 2009) or whether faster speakers
are faster in only some stages of word production (e.g.
Laganaro et al., 2009). Establishing exactly which
stages of word production are affected by inter-individ-
ual variability will help determine which stages’ time
frames should be rescaled and by how
much (Laganaro, 2016).

More generally, if differences in response times are
due to differences in the duration of lexical access
across participants, stimulus-aligned ERPs can hardly
be used to study encoding processes that occur after
lexical access. The ERPs monitored during these pro-
cesses will no longer be aligned across participants,
which will make it more difficult to observe significant
effects at the group level. Given these considerations,
there is an urgent need to establish to what extent par-
ticipants vary in the timing of (which) encoding

processes. As stated above, the aim of this study is pre-
cisely to contribute to this endeavour.

Current study

In the current study, we seek to determine where in the
time course of word production inter-individual differ-
ences emerge. We address this issue in two ways. First,
participants performed a picture-word interference
task and EEG activity was monitored during the task. In
this task, participants have to name pictures and
ignore written or spoken distractor words. The relation-
ship between the target and distractor words influences
picture naming times. A phonological overlap between
the two words speeds up naming times (when com-
pared to unrelated distractor words), and this effect
has been argued to originate in the phonological encod-
ing stage, (e.g. Damian & Martin, 1999; de Zubicaray
et al., 2002; Posnansky & Rayner, 1977; Rayner & Pos-
nansky, 1978; Starreveld & La Heij, 1996). Distractor
words of the same semantic category slow down
naming latencies, when compared to unrelated distrac-
tors (e.g. Lupker, 1979; Rosinski, 1977; Schriefers et al.,
1990, to cite a few). This effect has been associated
with lexical selection (Levelt et al., 1999) and/or pre-
articulatory processes (Mahon et al., 2007; see also
Bürki et al., 2020 for review). As discussed in the Intro-
duction, none of the processes involved in word pro-
duction have been associated with a specific ERP
component. As a consequence, it is not possible to rely
on typical EEG patterns to obtain information about
the different processes and their timing. We have
argued that individual variability in reaction time that
has been observed in many studies of word production
does not allow us to generalise the time course of pre-
articulatory planning stages proposed by Indefrey and
Levelt (2004) to all participants. An alternative way of
mapping EEG patterns to underlying cognitive processes
is to use experimental manipulations whose effects have
been associated with specific encoding processes. In the
present study, and following others, we use the phono-
logical facilitation effect as a marker of phonological
encoding, and the semantic interference effect as a
marker of lexical access and/or later pre-articulatory pro-
cesses (see e.g. Dell’Acqua et al., 2010). Differences in the
EEG signal between semantically related and unrelated
trials will be interpreted mainly as reflecting lexical
access if it occurs in the stimulus-aligned ERPs, shortly
after picture presentation, and before the phonological
facilitation effect. On the other hand, the effect will be
interpreted as reflecting later pre-articulatory processes
if it is observed in the response-aligned ERPs, close to
the onset of articulation, and after the phonological
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facilitation effect. Another option would have been to
manipulate the items’ properties (e.g. lexical frequency,
Strijkers et al., 2010; see also Miozzo et al., 2015). Both
approaches rest on the assumption that effects of the
experimental manipulation on the EEG signal can be
mapped onto the cognitive process(es) that generated
the effects at the behavioural level. We come back to
this issue in the General Discussion. We analyse exper-
imental effects in EEG at the group level and perform
several analyses (planned and exploratory)1 to deter-
mine how experimental effects vary with participants’
response speed.

Second, we compare the inter-individual variability in
naming times in immediate and delayed naming tasks.
For this purpose, our participants also named pictures
with a delay. Naming times in immediate naming tasks
are thought to reflect all processes up to execution of ges-
tures, whereas naming times in delayed tasks are thought
to reflect only stages after phonetic encoding (e.g. Laga-
naro & Alario, 2006). By comparing the variability in the
two tasks, we obtain information on the amount of varia-
bility that arises before/after articulatory execution. We
reasoned that if the between-participant variability that
we observe in the immediate naming times originates in
earlier processes (i.e. mapping between the picture and
the concept, lexical access, or phonological encoding),
between-participant variability should be much greater
in the immediate task than in the delayed task. Moreover,
the by-participant mean naming times in the two tasks
should not be correlated. By contrast, if a large portion
of the variability in response times in the immediate
naming task reflects late execution processes, we would
expect the variability in the two tasks to be similar, and
we would expect to see a relationship between the by-par-
ticipant mean naming times in the two tasks.

If participants vary in the duration of one or more
stages of word production, this might constrain the
use of ERPs to target specific encoding processes. For
example, if variability is found in lexical selection, stimu-
lus-aligned ERPs may not be an appropriate tool to
analyse processes that occur after lexical selection is
finalised, as participants’ neural activity will no longer
be synchronised. Similarly, if variability is found in late
encoding processes, e.g. phonetic encoding, response-
aligned ERPs may not be an appropriate tool to study
processes that occur earlier, e.g. phonological encoding
processes. More generally, if participants vary substan-
tially in the timing of a given encoding process,
whether experimental manipulations used to target
these processes in a given study will impact the EEG
signal, as well as the observed timing of this impact at
the group level, will depend on the extent of this varia-
bility in the participant sample.

Method

Participants

Forty-five right-handed, native speakers of German (ages
18–30, mean = 23.2, SD = 3.5) completed the exper-
iment. None reported hearing, psychiatric, neurological
or linguistic disorders, and their participation was
rewarded either by course credit or money. Participants
were given details about the experimental procedure
and provided their informed consent prior to partici-
pation. The study received ethical approval by the
ethical committee of the University of Potsdam
(Germany).

General procedure

Each participant was tested in three different sessions. In
the first session, participants completed three tasks:
picture-word interference, delayed naming, and word
naming (reading aloud). EEG activity was monitored
only while participants performed the picture-word
interference task. In the second and third sessions, par-
ticipants performed a series of standardised cognitive
tests that are not reported here. The reading aloud
task and the cognitive tasks are described in companion
articles (Bürki & Madec, 2022; Fuhrmeister, Madec &
Bürki, in preparation, see also Footnote 1).

Picture-word interference task

Material. We selected 90 German nouns (thereafter
“target words”) and their corresponding object pictures
from the Multipic database (see Appendix 1; Duñabeitia
et al., 2018). Lemma frequencies for these words, accord-
ing to the dlex database (Heister et al., 2011), ranged
from 9 to 21184 (mean = 1991.3, SD = 3678.4). In
addition, we selected 180 nouns to be used as distrac-
tors. A total of 450 stimuli were created by combining
the 90 pictures with the distractor words or a line of
Xs, so as to form the following five conditions: (1) base-
line: the 90 pictures were displayed synchronously with
a series of 6 Xs, (2) semantically related: each picture was
combined with a distractor noun from the same seman-
tic category (e.g. two animals, two tools), (3) semantically
unrelated: this condition was created by assigning the
90 distractors from the semantically related condition
to a different picture such that picture and distractor
had no semantic or phonological relationship, (4) pho-
nologically related: each picture was displayed with a
noun overlapping in the first phoneme(s) with the
target word (between 1 and 4 phonemes, mean = 2.62,
SD: 0.67), (5) phonologically unrelated: this condition
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was created by assigning the 90 distractors from the
phonologically related condition to a different picture
such that picture and distractor had no semantic or pho-
nological relationship.

The distractor was superimposed on the picture and
was written in white with a black outline in Arial font.
Stimulus-onset asynchrony was 0 ms. The first letter
was uppercase because German nouns are always capi-
talised. Pictures and distractors were presented against a
grey background. Figure 1 displays the target word
banana (Banane in German) with its distractors. Eight
additional pictures were selected as training or filler
items and associated with 16 new distractor words fol-
lowing the same criteria as for the test items.

Task description. The picture-word interference task
started with a familiarisation phase. During this phase,
pictures (without superimposed distractors) were pre-
sented one by one on the screen, together with their
name. Participants were instructed to be attentive to
the pictures, and to silently read the corresponding
word. The task was self-paced; the items were presented
in random order.

Next, participants completed the main picture-word
interference task. Participants were told to name the pic-
tures displayed on the computer screen as fast and accu-
rately as possible. The task consisted of a short training
phase followed by five blocks of test trials. We used a
mixed design (as opposed to blocked design), i.e. the
trials of the different conditions were mixed in each
experimental block. Each target word appeared only
once within each experimental block; order of presen-
tation was pseudorandomised in each block, and the
number of trials in each condition was equated in each
block. Each participant received a different order. Each

block started with four filler trials. A trial started with a
fixation cross, whose duration ranged between 2200
and 2300 ms. The picture-word pair was then displayed
at the centre of the screen for maximally 2300 ms or
until a response was given (visual angle of the square:
5.5°, vertical visual angle of the text: 0.6°). Vocal
responses were recorded starting from the picture-
word onset until 3000 ms after picture onset. The
inter-trial interval was a random duration between
1000 and 1200 ms. Continuous EEG was recorded
during this task.

Delayed naming task without distractors

Stimuli for the delayed naming task consisted of the
same 90 test pictures and 8 additional filler pictures
used for the picture-word interference task. A trial had
the following structure: A fixation cross first appeared
at the centre of the screen. After 700 ms, it was replaced
by the picture (without a distractor or line of Xs). The
picture stayed on the screen for 1000 ms2, and partici-
pants were instructed to wait until a response cue (a
blue circle) appeared before naming the picture aloud
as quickly as possible. Next, a blank screen replaced
the picture for a random duration ranging from 1200
to 2000 ms. Then a blue circle (the response cue)
appeared in the middle of the screen and stayed there
for 1500 ms. The next trial started after a 300 ms inter-
trial interval. The experiment started with eight training
items followed by four filler items. The 90 test items were
then presented one by one, in random order.

EEG acquisition and pre-processing
Continuous EEG was recorded with a BrainAmp MR
amplifier. Sixty-one Ag/Ag-Cl electrodes were positioned
according to the extended 10–20 system: Fp1, Fp2, AF7,
AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5,
FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2,
C4, C6, T8,TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7,
P5, P3, P1, Pz, P2, P4, P6, P8, PO9, PO7, PO3, POz, PO4,
PO8, PO10, O1, Oz and O2. FCz was used as the reference
electrode during the recording. The sampling rate was
set to 1000 Hz. During recording, impedance was kept
below 50 kΩ. The signal was amplified and digitalised
with an online low cut-off of 10 s and high cut-off of
1000 Hz.

The EEG signal was pre-processed in MATLAB, using
the EEGLAB toolbox (Delorme & Makeig, 2004). Continu-
ous signals were re-sampled at 500 Hz and recomputed
against the average of all electrodes. Data were then
filtered with a 0.1 Hz high pass filter (Kaiser windowed
sinc FIR filter, order = 8008, beta = 4.9898, transition
bandwidth = 0.2 Hz) and a 40 Hz low pass filter (Kaiser

Figure 1. Example of stimuli in the picture-word interference
task. The target word “Banane” (banana) with a semantically
related (Aprikose/apricot), semantically unrelated (Streichholz/
match), phonologically related (Banjo/banjo), and phonologi-
cally unrelated (Schwager/brother-in-law) distractor. Note that
two unrelated conditions were used so as to have the same dis-
tractor lists when contrasting a related and unrelated condition.
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windowed sinc FIR filter, order = 162, beta = 4.9898,
transition bandwidth = 10 Hz). Continuous EEG signals
were segmented into epochs of 4.4s, from 1s before
visual stimuli onsets to 3.4s after onsets. These epochs
were manually inspected, and noisy channels were
spherically interpolated (mean of channels interpolated
by participant = 0.7, range = [0–5]), and noisy epochs
were excluded (mean of epochs rejected by participant
= 10.5, range = [0–47]). Artefacts corresponding to blinks
were corrected using independent components analysis
(ICA, Chaumon et al., 2015). In order to improve the ICA
decomposition, a second data set was created, differing
solely from the first one by using a 1 Hz high pass filter
(Kaiser windowed sinc FIR filter, order = 802, beta =
4.9898, transition bandwidth = 2 Hz). A mean of 1.33
independent components (range = [1–3]) were
removed in the ICA. The obtained demixing matrix was
then applied to the data set filtered at 0.1 Hz. Individual
components corresponding to blinks were then
excluded in a semi-automatic way, relying on the
SASICA plugin (Chaumon et al., 2015, which relies on
the ADJUST algorithm, Mognon et al., 2011). Identified
ICA components were visually inspected and removed
if needed.

After removal of blink components, a second step of
data cleaning was performed in a semi-automatic way.
For each epoch, we detected channels presenting an
amplitude superior to +100 µV or inferior to −100 µV. If
a channel was detected on more than 45 epochs, the
channel was spherically interpolated on every epoch
(mean number of interpolated electrodes per participant:
0.73, range = [0–5]). If an epoch had more than three
channels detected, it was disregarded. If an epoch had
less than three channels detected, we spherically interp-
olated these channels for the epoch duration. Then we
screened epochs for channels with abnormal trends
(rejtrend function; slope > 50 µVwith R2 > 0.3). If an abnor-
mal trend was detected on more than 45 epochs, the
channel was spherically interpolated on every epoch. If
an epoch had more than three channels detected, it
was disregarded. If an epoch had less than three channels
detected, we spherically interpolated these channels for
the epoch duration. We then performed a last manual
check of the remaining epochs and excluded the remain-
ing noisy channels or electrodes. Finally, we excluded
epochs corresponding to trials with errors and trials
with vocal onsets starting before 600 ms or after
2300 ms relative to the onset of the visual stimulus. A
mean of 90 epochs by participants (range = [16–219])
were excluded (i.e. 20% of trials). The average number
of trials remaining for each condition after artifact rejec-
tion (along with standard deviation and ranges) can be
found in Table 1.

We extracted both stimulus-aligned and response-
aligned epochs so as to be able to capture effects that
arise both early after picture onset and shortly before
articulation. Stimulus-aligned ERPs capture processes
that are aligned on the presentation of the stimulus,
i.e. early encoding processes. Response-aligned ERPs
on the other hand are particularly appropriate to
target processes that are aligned on the vocal response,
and that reflect later encoding processes (e.g. Bürki et al.,
2015; Laganaro et al., 2013; Lancheros et al., 2020). We
therefore created both a stimulus-locked and
response-locked data set for each participant (e.g.
Krott et al., 2019; Laganaro et al., 2012; Wong et al.,
2017). The stimulus locked data set was created by seg-
menting epochs from −200 to 500 ms before and after
visual stimulus onset (distractor-picture pair, distractors
were presented with a stimulus-onset asynchrony of
0 ms, see Figure 2). Epochs of this data set were baseline
corrected by using the mean of the signals between
−200 and 0 ms relative to visual stimulus onset. The
response locked data set was created by segmenting
epochs from −600 to −100 ms relative to vocal response
onsets (see Figure 3). No baseline correction was applied
to the response-locked data set.3 The raw and pre-pro-
cessed EEG files are publicly available and can be
found on OSF (https://osf.io/svjh5/).

Analyses and results

Picture-word interference and delayed naming
tasks: picture naming latencies

Trials with incorrect responses on the picture-word inter-
ference task were removed from further analyses (n =
1150 total trials removed; 6%). Most errors occurred
because the participants produced a word other than
the intended word (n = 758 total trials removed; 66%
of errors), were dysfluent (hesitations, false starts, n =
231 total trials removed; 20% of errors) or did not
provide a response (n = 156 total trials removed; 14%
of errors). Response latencies for each trial (with a
correct response) were defined as the time between
the onset of the picture presentation and the onset of
the vocal response, and these were measured manually

Table 1. Mean number of trials, standard deviation (sd),
minimum (min), and maximum (max) per condition remaining
after artifact rejection.
Condition mean sd min max

Baseline 78.2 7.06 59 89
Phonologically related 77.0 7.73 59 88
Phonologically unrelated 75.7 7.40 59 90
Semantically related 75.0 8.02 53 88
Semantically unrelated 77.3 7.58 57 90
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based on the spectrogram and oscillogram using the
Praat software (Boersma & Weenink, 2014). The resulting
dataset can be accessed here: https://osf.io/svjh5/. There

were 58 trials for which the response of the participant
or its onset could not clearly be defined (0.3% of the
data); these trials were disregarded. We additionally

Figure 2. Stimulus-locked ERPs averaged over all participants and conditions: a) topographies at randomly selected time windows; b)
waveforms at various electrodes.

Figure 3. Response-locked ERPs averaged over all participants and conditions: a) topographies at randomly selected time windows; b)
waveforms at various electrodes.
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removed 1791 trials that corresponded to epochs with
artefacts in the EEG data, as well as 1044 trials with
naming latencies below 600 ms, such that the analysis
of the response times and the analysis of the EEG
signal are based on the same set of trials. If trials with
response times below 600 ms were to be included, the
ERP dataset would contain signals recorded during
articulation. Given the difference in naming times
across conditions, there would further be an imbalance
in the number of epochs recorded during articulation
across conditions.

Analyses of behavioural data were performed in R (R
Core Team, 2021), and graphs were created using the
package ggplot2 (Wickham, 2009). The scripts and data-
sets to reproduce these analyses are available publicly
on OSF (https://osf.io/svjh5/). To facilitate replicability
of our findings, we distinguish between planned and
exploratory analyses. Planned analyses are those which
were planned prior to data collection, whereas explora-
tory analyses were conducted after data collection or
after initial analyses had been done.

Analysis 1. Group level analysis, replication of classical
picture-word interference effects (planned)

The first statistical model was conducted to deter-
mine whether the experiment could replicate the pho-
nological facilitation, semantic interference, and
general interference effects reported in the literature.
This is a prerequisite to then examine the electrophysio-
logical markers of these effects. We analysed response
latencies with linear mixed-effects models (e.g. Gold-
stein, 1987) using the statistical software R (R core
team, 2021) and the library lme4 (Bates et al., 2015).
We estimated p-values with the lmerTest package (Kuz-
netsova et al., 2017), which uses the Satterthwaite
method. Contrasts were determined manually (see
Schad et al., 2020) such that the intercept represents
the grand mean, and the four contrasts represent the
difference between phonologically related and unre-
lated trials (i.e. phonological contrast), the difference
between semantically related and unrelated trials
(semantic contrast), the difference between trials in the
phonologically unrelated and baseline conditions
(general interference contrast 1) and the difference
between trials in the semantically unrelated and base-
line conditions (general interference contrast 2).
Related trials were coded as +1 and unrelated trials as
−1. Trials in the baseline condition were coded as
1. The mean of all naming times was 888 ms (SD = 143,
range = [600–2300 ms]), and average naming times for
a given participant ranged between 742 and 1129 ms,
and for items between 785 and 1056 ms. The mean
naming latencies in each condition are presented in
Figure 4.

Models had by-participant and by-item random inter-
cepts and slopes for each contrast, but no correlations
between intercepts and slopes. The model was run
twice: once with all data points and once without out-
liers. Outliers were defined as any absolute values of
the scaled residuals that were greater than 2.5. The
outlier corrected model output is reported in Table 2.
Note that the pattern of results is not different when
these outliers are kept in the analysis. These results repli-
cate the phonological facilitation, semantic interference,
and general interference effects. Note that the same
pattern of results is found when the naming latencies
are log transformed.

Having replicated the phonological facilitation and
semantic interference effect in the response latencies,
we examined the neurophysiological correlates of
these effects and their timing in subsequent analyses.

Analysis 2. Variability in immediate and delayed
picture naming latencies (planned)

The aim of this analysis was to determine how much
of the variability in response times across participants

Figure 4. Picture-word interference task: observed mean
naming latencies and standard errors (values are adjusted for
within-participant designs following Morey, 2008) for each
condition.

Table 2. Output of Analysis 1. Mixed-effects models testing the
phonological, semantic, and general interference contrasts.

Dependent Variable

Predictors Estimates CI t p

Intercept 860.81 833.43–888.19 61.62 <0.001
Baseline - Unrelated
(phon.)

88.42 79.99–96.85 20.56 <0.001

Baseline - Unrelated
(sem.)

86.75 76.59–96.91 16.74 <0.001

Phonological contrast −27.80 −41.25–−14.35 −4.05 <0.001
Semantic contrast 50.53 35.50–65.57 6.59 <0.001
NPicture 90
NParticipant_ID 45
Marginal R2/Conditional
R2

0.052/
0.326
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can be accounted for by late articulatory execution pro-
cesses. Recall that the delayed naming task is thought to
represent late articulatory processes, while the immedi-
ate naming task (the picture-word interference task) is
thought to reflect all stages of word production (e.g.
Laganaro & Alario, 2006). Only trials from the baseline
condition (picture with superimposed line of Xs) from
the picture-word interference task were included in
this analysis because those trials are comparable to the
delayed naming task, which was a simple picture-
naming task with no distractor words. Other trials that
were eliminated from this analysis include trials with
incorrect responses on either task and trials on the
delayed task that had a negative reaction time (n =
323). Trials on the delayed task had a negative response
time if the response was given prior to the response cue.
We first calculated the mean of the reaction times for
each participant on each task, (immediate: M = 791 ms,
SD = 102 ms; delayed: M = 458 ms, SD = 105 ms). By-par-
ticipant mean reaction times were submitted to a paired
Levene’s test (two-sided) using the levene.Var.test func-
tion from the PairedData package (Champely, 2018) in R
to test for heterogeneity of variance in the two tasks.
This function calculates a paired t-test on the absolute
deviations from the mean or median (we used the
median, immediate: M = 77 ms, SD = 69 ms; delayed: M
= 82 ms, SD = 71 ms). We found no significant difference
in between-participant variability between the two
tasks, t(44) =−0.41, p = 0.69 (see Figure 5A-B).

If more between-participant variability emerges in
late encoding processes, we would additionally expect
the mean reaction times for each participant to be well
correlated between the immediate (i.e. baseline con-
dition with no distractors) and delayed naming tasks,
and this is indeed what we found, r = 0.58 [95% CI
0.34–0.74], p < 0.001.

By comparison, certain properties of words (e.g. fre-
quency) have been shown to influence word-naming
latencies at earlier stages, such as lexical selection or
phonological encoding (e.g. Alario et al., 2002; Levelt,
1999). If the immediate task reflects all stages of word
production and the delayed task reflects only later
stages, we would expect to see more between-item
variability in the immediate task compared to the
delayed task (by-item descriptive statistics, immediate:
M = 789 ms, SD = 71 ms; delayed: M = 455 ms, SD =
33 ms). We used the same procedure described above
to test for differences in between-item variance
between the two tasks and found that the variance in
the immediate task (absolute deviations from the
median, M = 58 ms, SD = 40 ms) was greater than the
delayed task (absolute deviations from the median, M

= 27 ms, SD = 19 ms), t(89) = 6.94, p < .001 (see Figure
5C-D). We also would not expect the mean reaction
times for each picture in the two tasks to be correlated;
however, we did find a modest correlation between the
two tasks, r = 0.23 [95% CI 0.02–0.42], p = 0.03. To test
whether the correlation between the by-participant
reaction times in the two tasks was stronger than the
correlation between the by-item reaction times, we
used the Fisher z-transformation to statistically
compare the two correlations. This test revealed that
the correlation between the by-participant reaction
times for the two tasks was indeed stronger than the
by-item correlation, z = 2.28 [95% CI for difference in
correlations .05–.61], p = .02.

In these analyses, we computed the mean of the reac-
tion times on all trials for each participant and item and
entered these mean values into the statistical tests.
However, a reviewer pointed out that reaction time
measures typically follow an ex-Gaussian distribution
(e.g. Balota & Yap, 2011; Marmolejo-Ramos et al., 2015)
and it may therefore be more appropriate to use an
ex-Gaussian rather than a Gaussian distribution. An ex-
Gaussian distribution represents a convolution of a
normal and exponential distribution (Balota & Yap,
2011). Following this comment, we computed the ex-
Gaussian mu parameter (the mean of the normal part
of the distribution) for each participant and item and
ran the analyses again. Note that whereas the mean of
the normal distribution is based on all trials, the mean
of the ex-Gaussian distribution is only based on trials
that are not part of the exponential parameter, i.e.
longer trials. In general, we see a similar pattern of
results to the original analyses using means. We tested
between-participant variability on the two tasks and
found that the delayed task showed more variability
than the immediate task, t(44) =−2.37, p = .02. This is
perhaps surprising4, but in any case, the variability
observed in the immediate task was not larger than in
the delayed task, similar to what we observed in the
original analysis. We additionally found a correlation
between naming times in the immediate and delayed
tasks, r = .37, p = .01. For the items analyses, we found
that the between-participant variability was significantly
larger than in the delayed task, t(89) = 3.34, p = .001, and
we did not find a significant correlation between the by-
item naming times in the two tasks, r = .09, p = .39. As
indicated above, we did not find that the by-participant
correlation was stronger when explicitly compared to
the by-item correlation. However, the by-participant cor-
relation reached significance, whereas the by-item corre-
lation did not, which is consistent with our original
predictions. Therefore, we still consider these results to
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be consistent with the results obtained from the original
analyses.

Overall, these analyses do not provide support for the
hypothesis that the variability across participants is
greater in naming latencies that presumably reflect all
encoding process, from picture recognition to initiation
of articulation (immediate picture naming task), than in
naming latencies that presumably only reflect execution
processes (delayed picture naming task). These results
are compatible with the hypothesis that at least some
of the differences across individuals in naming latencies
actually arise in late encoding processes.

ERPs in picture-word interference task

ERPs were analysed with mass univariate analyses. Mass
univariate analyses consist in performing statistical tests
at each time point and electrode (e.g. Pernet et al., 2015).
These analyses were performed in LIMO, an open source
MATLAB toolbox (Pernet et al., 2011). The analysis pro-
ceeds in two steps. In the first level analysis, the data
are analyzed for each participant separately using a hier-
archical General Linear Model (GLM). The beta coeffi-
cients for each predictor are estimated for each time
point and channel. In the second level analysis, the sig-
nificance of these estimated parameters is assessed
across participants (see Pernet et al., 2011 for details).
We used robust paired t-tests and corrected for multiple
comparisons by applying the threshold free cluster
enhancement (TFCE) procedure (Mensen et al., 2017;

Mensen & Khatami, 2013; Smith & Nichols, 2009). In all
but the second analysis, statistical significance was
assessed at the group level only. In Analysis 2, we
relied on statistical significance at the participant level.

Analysis 1. Group-level effects of distractor condition
(planned)

The aim of this analysis was to assess the electro-
physiological signature of the semantic interference,
phonological facilitation, and general interference
effect at the group level. Plots displaying group-level
results of the semantic interference and phonological
facilitation effects are displayed in Appendix 3, and
results for the general interference effect are presented
in supplementary materials.5 As described in detail in
the EEG acquisition and pre-processing section, we con-
ducted stimulus-locked analyses to test for early effects
that were aligned on the stimulus onset and response-
locked analyses to capture later effects aligned on the
vocal response.

Semantic interference effect. In the stimulus-locked
ERPs, the semantically related and semantically unre-
lated conditions differ between about 390 and 460 ms
after picture onset on a set of posterior-central electro-
des, with more positive values for the related condition
than the unrelated, as can be seen on the plot with
values on the electrode Pz (Appendix 3, Figure A1). In
the response-locked ERPs, the two conditions differ
from 420 to 100 ms before speech onset (i.e. last
sample of analysed time window). The effect starts on
bilateral posterior electrodes and is subsequently

Figure 5. A. Density plot and B. boxplot showing the distributions of by-participant mean reaction times in each task. C. Density plot
and D. boxplot showing the distributions of by-item mean reaction times in each task. Similar variance was observed between the two
tasks for participant analysis, but variance differed in the two tasks (greater variance in immediate task than delayed) for item
analyses.
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distributed over the whole scalp, with a dissociation
between fronto-central electrodes displaying less nega-
tive values for the related condition, and posterior elec-
trodes displaying more negative values for the unrelated
condition (Appendix 3, Figure A2).

Phonological facilitation effect. In the stimulus-
locked ERPs, the phonologically related and unrelated
conditions differ between about 420 and 500 ms on a
set of posterior electrodes, mostly right lateralised,
displaying less negative values in the related con-
dition (Appendix 3, Figure A3). In the response-
locked analysis, phonologically related and phonolo-
gically unrelated conditions differed statistically start-
ing 600 ms before vocal onset on the posterior area,
with less negative values in the unrelated condition
(Appendix 3, Figure A4).

Analysis 2. Single-subject analysis and correlations
with cognitive measures and response times (planned)

The aim of this analysis was to determine the time
course of the semantic interference and phonological
facilitation effects at the individual level and examine to
what extent these can be related to participants’ response
times and performance on cognitive tasks. We examined
the test contrasts for each participant (first level analysis
in LIMO) and corrected for multiple comparisons using
TFCE. For the semantic contrast, 0 out of 45 participants
showed a significant effect in the stimulus-locked ERPs,
and only six participants had an effect after correction
in the response-aligned ERPs. For the phonological con-
trast, two and four participants showed a significant
effect in the stimulus-aligned and response-aligned ana-
lyses, respectively. Given the small number of participants
where effects could be detected, we were not in a pos-
ition to correlate the time course of these effects with
any other measure. Instead, we performed exploratory
analyses, to be described below. We see two possible
reasons for the lack of significant outcome at the individ-
ual level. The first and obvious reason is statistical power.
We note however that extending the number of items for
the present design would be difficult. The number of pic-
turable words is limited and many of them are not part of
a clear semantic category (i.e. cannot be used for the
semantic manipulation). A second reason for the lack of
a significant outcome at the individual level may be
related to the inter-item variability in the timing of encod-
ing processes, i.e. lack of synchronisation of processes
across trials. We come back to this issue in the General
Discussion.

Analysis 3. Experimental effects in fast versus slow
speakers (exploratory)

This analysis was inspired by Laganaro et al. (2012).
These authors divided their participants into groups
according to their response speed and performed an

analysis for each speed group. With this analysis we
can test the hypothesis that the time course of exper-
imental effects depends on naming times. For each con-
trast, we did a median split on participants’ median
reaction times of the conditions that made up that con-
trast to divide participants into two groups of fast and
slow responders. For the semantic contrast, for
example, we calculated each participant’s median reac-
tion time for the semantically related and unrelated
trials and performed the median split on those values.
In the present study, we use the semantic interference
and phonological facilitation effects as markers of
encoding processes in word production to test
whether inter-individual differences in the speed of
picture naming influence ERP effects, which is why we
split participants into speed groups using only trials
from the condition of interest (rather than, for
example, using reaction times from the baseline con-
dition). Investigating inter-individual differences in the
magnitude of the semantic interference and phonologi-
cal facilitation effects is outside the scope of the present
study. We note that the number of participants in each
group (i.e. between 22 and 23) is similar to the total
number of participants use in many similar studies
(e.g. Bürki, 2017b; Krott et al., 2019; Laganaro et al.,
2012; Piai et al., 2012). In addition, we included a rela-
tively high number of items (n = 90).

Semantic interference effect. In the stimulus-locked
analysis of the semantic contrast, slow participants (n
= 23, mean reaction times = 1003 ms, SD = 79 ms,
range = [907–1161 ms]) showed an effect on a small
cluster after correction for multiple comparisons
around 250–260 ms after picture presentation on right-
lateralised posterior electrodes with more positive
values for the semantically related condition (Figure 6).
For fast participants (n = 22, mean reaction times =
844 ms, SD = 46, range = [778–920 ms]), a difference is
found between 425 and 445 ms after picture onset on
posterior electrodes with more positive values for the
semantically related condition (Figure 7). If the semantic
interference effect reflects lexical access and lexical
access occurs later in slower speakers (e.g. Laganaro
et al., 2012), we would have expected to see an effect
in an earlier time window for fast than for slow partici-
pants. Assuming that we consider these very small
effects meaningful, the data seem to show the opposite
pattern from what we predicted.6 We note here that the
differences in the EEG pattern across conditions in the
stimulus-locked ERPs cannot unambiguously be linked
to a specific cognitive process. This pattern could
result from a difference in the onset of articulatory
movements across conditions. It is indeed possible that
participants have already started moving the articulators
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in this time window for trials with short response times.
Given the difference in response times across conditions,
these movements would be expected to start earlier in
the unrelated condition.

In the response-locked analysis, we observed an
effect in different time windows depending on the
speed group. For the slow participants (n = 23), signifi-
cant differences can be found as early as 500 ms
before response onset on a set of posterior electrodes
with less negative values for the semantically unrelated
condition (Figure 8). Starting around 410 ms prior to the
vocal response, a difference in conditions is found, with
bilateral frontal electrodes showing less negative values
for the semantically related condition and posterior elec-
trodes showing less negative values for the semantically
unrelated condition. The localisation and direction of the
effect is similar for fast participants (n = 22), except the
effect starts closer to the response than for slow partici-
pants, around 220 ms before response onset (Figure 9).
This difference between groups is as expected if slow
and fast participants differ in the last encoding stages
before the onset of articulatory movements. We note
here that the observed difference can hardly be associ-
ated with difference in articulatory artefacts across con-
ditions, given that the ERPs are aligned on response

onset, and the fact that trials have the same articulatory
properties across conditions.

Phonological facilitation effect. For the phonological
contrast, no time point remained significant after correc-
tion for multiple comparisons for slow (n = 23, mean
reaction times = 954 ms, SD = 79, range = [843–
1131 ms]) or for fast speakers (n = 22, mean reaction
times = 813 ms, SD = 45 ms, range = [720–883 ms]), in
the response-locked or in the stimulus-locked analyses.

Analysis 4. Time course of experimental effects in
varying samples of participants (exploratory)

The comparison of experimental effects across speed
groups suggests that the timing of effects depends on
participants’ naming speed. When collecting data for
an experiment, we use random samples of participants,
with no a priori information on the speed with which our
participants can name pictures. In this final analysis, we
examined how the results of the group analyses vary
with different samples of participants.

For each contrast (phonological and semantic), we
took 20 random samples of 23 participants. For each
sample, we performed the exact same procedure as
described above for the group results: Mass univariate
analysis on response-locked and stimulus-locked ERPs
comparing phonologically related to phonologically

Figure 6. Results of mass univariate analysis for the comparison between the semantically related (SR) and unrelated (SU) trials for the
stimulus-locked ERPs of slow participants (n = 23), with significant t-values before correction (top left); significant t-values after correc-
tion with TFCE (bottom left); mean amplitude at electrode PO8 (electrode where t-value is maximal) for the semantically related and
unrelated trials, significant time points (after TFCE correction) underlined in purple, shading represents 95% confidence intervals (top
right); Topographic map of t-values before correction at 250 ms (bottom right).
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Figure 7. Results of mass univariate analysis for the comparison between the semantically related (SR) and unrelated (SU) trials for the
stimulus-locked ERPs of fast participants (n = 22), with significant t-values before correction (top left); significant t-values after correc-
tion with TFCE (bottom left); mean amplitude at electrode CPz (electrode where t-value is maximal) for the semantically related and
unrelated trials, significant time points (after TFCE correction) underlined in purple, shading represents 95% confidence intervals (top
right); Topographic map of t-values before correction at selected time windows (bottom right).

Figure 8. Results of mass univariate analysis for the comparison between semantically related (SR) and unrelated (SU) trials for the
response-locked ERPs in slow participants (n = 23) with significant t-values before correction (top left); significant t-values after correc-
tion with TFCE (bottom left); mean amplitude at electrode AF7 (electrode where t-value is maximal) for the semantically related and
unrelated trials, significant time points (after TFCE correction) underlined in purple, shading represents 95% confidence intervals (top
right); Topographic map of t-values before correction at selected time points (bottom right).
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unrelated trials and semantically related to unrelated
trials using TFCE to correct for multiple comparisons.
Each analysis can be seen as a small replication of the
group analysis, with a different sample.

We then visualised changes in the results across
samples. The results of these four analyses are illustrated
in Figure 10. Only 5% of samples showed effects at
around 240 ms after stimulus onset in the stimulus-
locked analysis of the semantic contrast (Figure 10A).
The most robust results were found in the response-
locked analyses for the semantic contrast, with some
electrodes showing a significant effect at about 100–
200 ms before word onset in 80–90% of the samples
(Figure 10B). No samples showed significant effects in
the stimulus-locked ERPs for the phonological contrast
(Figure 10C), and only 20–25% of samples showed sig-
nificant effects around 580 ms before word onset in
the response-locked analysis for the phonological con-
trast (Figure 10D). These results suggest that the time
course of effects—but also whether an effect is observed
at all—depends on the sample of participants.

General discussion

The present study investigated inter-individual variabil-
ity in the time needed to prepare a vocal response for
word production. Our first aim was to determine

whether this variability could be associated with
specific encoding processes, and our second aim was
to examine the impact of inter-individual differences in
the timing of encoding processes on group results in
EEG studies.

Locus of inter-individual differences in naming
latencies

As expected, participants’ naming times in the present
study were highly variable; mean picture-naming
latencies ranged from 740 to 1130 ms. The slowest par-
ticipant needed on average 390 additional milliseconds
to perform the task than the fastest participant. Where
do these differences come from? Are slower participants
slower in all encoding process, from conceptualisation
to execution, or do they need more time only in a
subset of encoding processes? Several findings from
the present study concur to support the hypothesis
that inter-individual differences in response times at
least partially originate in late encoding processes. The
first source of evidence comes from the comparison of
variability of individual naming times in the immediate
naming task (baseline condition) and the delayed
naming task. In a delayed naming task, participants
have time to encode their response up to the phonetic
level (at least for the first syllable of the response)

Figure 9. Results of mass univariate analysis for the comparison between semantically related (SR) and unrelated (SU) trials for the
response-locked ERPs in fast participants (n = 22) with significant t-values before correction (top left); significant t-values after correc-
tion with TFCE (bottom left); mean amplitude at electrode F7 (electrode where t-value is maximal) for the semantically related and
unrelated trials, significant time points (after TFCE correction) underlined in purple, shading represents 95% confidence intervals (top
right); Topographic map of t-values before correction at selected time points (bottom right).
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before the initiation of the response. As a result, the
naming times are assumed to mostly reflect the pro-
cesses involved in the execution of articulatory gestures
(Laganaro & Alario, 2006). Under this assumption, inter-
individual variability in delayed response times reflects
inter-individual variability in late execution processes.
By contrast, naming times in an immediate naming
task reflect the sum of all encoding processes, from con-
ceptualisation to articulation.

In the current study, we found that the between-par-
ticipant variability was similar in the delayed and
immediate naming tasks. Moreover, the correlation
between the average by-participant response times of
the two tasks was rather high, providing additional
support for the hypothesis that a large part of inter-indi-
vidual differences in response times arises in late encod-
ing processes. We acknowledge, however, that the
correlation of r = .58 still leaves plenty of variance unex-
plained, and we cannot rule out the possibility that some
of that unexplained variance stems from earlier proces-
sing stages. In comparison to the analyses of between-
participant variability, the correlation between the by-
item mean response times in the two tasks was
weaker, and the between-item variability was greater
in the immediate naming task than in the delayed
naming task. We know from previous studies that the
properties of the words or of the pictures (frequency,

age of acquisition, name agreement, see Perret &
Bonin, 2019, for a recent meta-analysis of the variables
that influence picture naming latencies) influence
naming times. Unlike for between-participant variability,
we have a fairly good understanding of the origin of
naming latency differences across items. Many variables
that are known to influence naming latencies have been
associated with early encoding processes, namely con-
ceptualisation, mapping between picture and concept,
lexical access, or phonological encoding. Assuming, fol-
lowing others (e.g. Laganaro & Alario, 2006) that naming
latencies in a delayed naming task reflect mostly late
articulation stages of word production, the weaker cor-
relation between the mean naming times in the immedi-
ate and delayed tasks for the items and the greater
between-item variability in the immediate task is in
line with the assumption that a substantial amount of
the variability across items arises in early encoding pro-
cesses. A substantial amount of inter-item variability in
the timing of encoding processes would also explain
why the experimental manipulation did not significantly
influence the ERPs in the single participant analysis.

It is important to acknowledge that our interpretation
of the behavioural data relies on the assumption that
only articulation processes are shared between both
tasks. However, it might also be possible that partici-
pants vary systematically in their speed in response to

Figure 10. Results of mass univariate analyses for 20 random samples of 23 participants each. Note the difference in scales among
plots. Plots display the percentage of time an electrode and time point are significant after TFCE correction on 23 participants (p < .05)
for the A. stimulus-locked analysis for the semantic contrast, B. response-locked analysis for the semantic contrast, C. stimulus-locked
analysis for the phonological contrast, and D. response-locked analysis for the phonological contrast.
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any stimulus, specifically in their initiation of a motor
response. In the delayed naming task, participants
must control or inhibit their initiation of a motor
response until the response cue, and it is possible that
a participant’s speed of initiation could be common to
more tasks than just picture naming. This could result
in a strong correlation between delayed naming and
any other reaction time measure. Because we had also
collected data on other reaction time tasks, we were
able to test this hypothesis. To do this, we computed
the mean reaction time of the neutral trials from a
Flanker task (Eriksen & Eriksen, 1974) and correlated
these with participants’ delayed naming speed. We did
not find a significant correlation when computing the
correlation with either participants’ mean response
times on the delayed naming task, r = .23, p = .13, or
the ex-Gaussian mu parameter, r = .15, p = .34. Of
course with a null result, we cannot claim evidence of
no effect; however, we at least do not have support for
a correlation between delayed naming and a non-
verbal reaction time measure. We also find a similar
pattern when we test the correlation between the
Flanker task and participants’ mean response times on
the immediate naming task, r = .29, p = .05, and when
using the ex-Gaussian mu parameter, r = .21, p = .17.
Although the correlation with the mean response
times on the immediate task is marginally significant, it
is attenuated when using the ex-Gaussian mu par-
ameter. This suggests that the relationship with the
overall mean could be due to some participants with
some especially slow responses. We acknowledge that
the immediate and delayed naming tasks may have
more cognitive processes inherent to both tasks than
just the execution of articulatory gestures, and an impor-
tant goal for future studies will be to determine exactly
which processes are shared between the two tasks.

The analyses of the EEG data also provide support for
the hypothesis that at least some of the variability across
participants arises in late encoding processes. For
example, the difference between semantically related
and unrelated trials is informative on the locus of inter-
individual differences. In the whole-group analyses, we
mostly found a difference in conditions in a late time
window (between about 400 and 500 ms post-picture
onset in the stimulus-aligned analyses). In the
response-aligned analyses, this difference was found
aligned on the vocal responses. The timing of this
effect and in particular the observation that the effect
is aligned on the response times favours a post-lexical
locus of this effect (though our results do not necessarily
exclude the possibility that lexical selection is not
finalised until late encoding stages, see cascading
models of word production, e.g. Dell, 2013; Lorenz

et al., 2021; Peterson & Savoy, 1998). This timing is com-
patible with the response-exclusion account. In this
account, in a picture-word-interference task, participants
process the distractor and store its corresponding articu-
latory programmes in a pre-response buffer. In order for
the target word to be produced, the buffer must first be
cleared. The suppression of the non-target response
from the buffer depends on the relevance of this
response. Distractors of the same semantic category
are more relevant and therefore take longer to be sup-
pressed (see for instance Mahon et al., 2007; but see
for instance Abdel Rahman & Aristei, 2010). The fact
that we find more evidence for a late than an early
locus of the semantic interference effect does not
speak to whether the semantic interference effect also
partially occurs during lexical access. Other EEG studies
do report effects in time windows that are compatible
with a lexical locus (e.g. Rose et al., 2019) or in even
earlier time windows possibly related to the conceptual
stage (Dell’Acqua et al., 2010). The smaller difference we
observe between related and unrelated trials in the
stimulus-aligned ERPs is more difficult to interpret. It
could be taken to reflect a lexical locus (as reported for
instance in Rose et al., 2019) or an earlier onset of articu-
latory artefacts for a subset of trials (the ones with
shorter response latencies) in the unrelated than in the
related condition.

Crucially, the comparison between slow and fast par-
ticipants reveals that the effect in the response-aligned
ERPs lasts longer in the slow participants (from about
100 to 400 ms before the onset of the vocal response)
as opposed to the fast participants (from about 100 to
200 ms before the onset of the vocal response). A poss-
ible explanation is that slower participants need more
time to suppress the distractor response. Interestingly,
naming times are 135 ms shorter in the fast than in
the slow participants. These results are consistent with
variability across participants originating in the last
encoding processes before the onset of articulation.

Again, though, this finding does not rule out the
possibility that inter-individual variability also arises at
earlier time points. Some previous studies have associ-
ated differences in response speed to earlier processes,
such as lexical access (Laganaro et al., 2012). One key
difference in our study from the study by Laganaro
et al. (2012) is that they compared ERPs of their speed
groups in a simple picture-naming task. In contrast, we
compared the effect of an experimental manipulation
(semantically related vs. unrelated distractors) across
groups. In the present study, effects are small or
absent in the stimulus-aligned ERPs. Notably, such a
pattern would also be expected if participants varied
greatly in the timing of earlier processes. Some
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amount of synchronicity is indeed required for effects to
surface in the group results. Logically, if there is too
much variability in earlier encoding processes across
participants the group analyses may fail to detect any
effect in earlier time windows.

In sum, whereas others before us have associated
differences in response speed to earlier processes, such
as lexical access (see Laganaro et al., 2012), our
findings support the hypothesis that variability also
arises in late encoding processes, i.e. phonetic encoding
process and/or the execution stage.

Inter-individual differences and ERPs

Our analyses comparing fast and slow speakers suggest
that inter-individual differences in naming times do
influence the timing of experimental effects in the EEG
signal. For example, the duration of the semantic inter-
ference effect differs by at least 200 ms across speed
group. This result complements previous studies (e.g.
Laganaro et al., 2012) in showing that response speed
does not only generate differences in the brain signal
across participants, it generates differences in the
timing of experimental effects. This conclusion is
further supported by the analysis with random
samples of participants. This analysis suggests that the
timing of experimental effects varies with the sample
of participants. Taken together, these analyses reveal
that if technically, ERPs provide a high temporal resol-
ution, variability across participants hinders this
precision.

The observation that experimental effects vary with
the speed of participants or more generally, with the
participant sample, has important implications for
research in language production. Firstly, given that
encoding processes are not associated with well-
defined ERP components, many studies rely on the
timing of effects to associate the electrophysiological
response with a given cognitive process (using Indefrey
and Levelt’s time course, 2004, or a rescaling of this time
course). The finding that the timing of experimental
effects varies with response speed suggests that it may
be difficult to probe individual differences in language
production in this way. As argued above, effects at the
group level can only surface when the ERPs of a
sufficient number of participants in the experiment are
synchronous. The findings in the present and previous
studies that slow and fast speakers differ in the time
course of EEG effects show that this is not always the
case. Simply increasing our sample size may not necess-
arily solve this problem, however. In order to detect an
effect in a given time window in a statistical analysis,
the majority of participants need to show the effect in

that time window. Testing more participants who show
the effect in that time window would indeed increase
power to detect this effect; however, adding more par-
ticipants who show the effect in a different time
window will decrease power for detecting the effect in
the time window of interest. Assuming that participants
vary in the time course effects, it is not possible to know
in advance in which time windows a given participant
will show an effect. Unlike in language production,
other subfields can indeed rely on well-defined ERP com-
ponents to interpret effects; therefore, those studies may
not be subject to the limitations involving timing of
effects and inter-individual differences described here.

Another explanation of our results is that we simply
did not have enough power to detect effects with our
sub-samples in the exploratory analyses of the fast and
slow groups or the 20 sub-samples of 23 participants.7

We note, however, that many similar studies in the
field have had sample sizes comparable to the size of
our sub-samples. For example, studies in the field that
have used similar designs (picture-word-interference
tasks with EEG) range from 10–25 participants and 24–
416 items (e.g. Aristei et al., 2011; Bürki, 2017a; Dell’Ac-
qua et al., 2010; Dirani & Pylkkänen, 2020; Greenham
et al., 2000; Hirschfeld et al., 2008; Krott et al., 2019;
Piai et al., 2012; Roelofs et al., 2016; van Schie et al.,
2003; Rose et al., 2019). Irrespective of whether the
changes in the timing or presence of effects across
samples reflects lack of power or differences in synchro-
nisation across participants, other published studies in
the field may suffer from the same limitations, so we
should exercise caution in interpreting those results, as
well. As we discuss in the next paragraph, we unsurpris-
ingly see variability in the timing of EEG effects across
several studies that test similar questions.

We speculate that the lack of synchronicity across
participants is responsible for many of the observed
differences across studies in the field. As mentioned
above, our findings diverge from several similar studies
in the field; however, discrepancies are frequent in this
literature. Take for instance the semantic interference
effect. A subset of studies report an absence of an
effect (we restrict the discussion to amplitude analyses,
Hirschfeld et al., 2008b; Piai et al., 2012), while others
report effects that vary in their timing and shape. For
example, several studies have found evidence of the
semantic interference effect in a later time window,
around 350–500 ms post-stimulus onset (e.g. Blackford
et al., 2012; Cai et al., 2020; Greenham et al., 2000;
Lorenz et al., 2021; Roelofs et al., 2016; and Rose et al.,
2019; see Dirani & Pylkkänen for similar results using
MEG). On the other hand, several studies find evidence
of the semantic interference effect at earlier time
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windows. Dell’Acqua et al. (2010) found this effect
around 100 ms after stimulus onset, mostly in left
frontal and temporal electrodes (see also Aristei et al.,
2011; Rose et al., 2019; for additional evidence from
the continuous-picture naming paradigm, see Costa
et al., 2009).

A first possible explanation for the divergent findings
could be found in analysis choices. In the present study,
we analysed both stimulus-aligned and response-
aligned ERPs, we performed the analysis with as few a
priori restrictions as possible and used the most conser-
vative correction for multiple comparisons. Unlike
cluster-based permutation, TFCE provides information
on significance for each time point and allows us to
draw conclusions about the timing of effects (Sassenha-
gen & Draschkow, 2019). In contrast, many studies have
only examined stimulus-aligned ERPs and/or analysed
the amplitude average in a given time window or
several time windows (e.g. Dell’Acqua et al., 2010). The
findings of the present study suggest that in addition
to study design and methodological differences,
different results are expected as a result of inter-individ-
ual differences in processing speed. We have argued
along with others (Laganaro et al., 2012) that inter-indi-
vidual differences in picture naming speed can affect
group-level ERP results. The differences in results
found for our sub-groups of fast vs. slow speakers, as
well as the range of results found for random sub-
samples of participants support this idea. We reiterate
here that inter-individual differences in the timing of
encoding processes will not only generate differences
in the timing of effects across studies; in studies where
variability across participants is high in a given time
window, the chances of detecting an effect in this time
window at all will be low. For instance, it is entirely poss-
ible that the participants in the present study, even
within the slow and fast groups, were highly variable
in early encoding processes, preventing us from detect-
ing any effect (or allowing us to spot only small effects)
in these time windows. Individual variability could
potentially also explain differences between results in
our study and others with more similar design and analy-
sis choices (e.g. studies that reported both stimulus-
aligned and response-aligned analyses, Krott et al.,
2019; Wong et al., 2017).

In the present study, we used mass univariate ana-
lyses to analyse the ERPs of our participants and show
that with such analyses, effects differ across groups or
samples of participants. In our analyses, a statistical
test was performed at each time point, first across
trials for a given participant, then across participants.
An effect will therefore only be detected if there is a
sufficient number of time points where a sufficient

number of trials/participants exceed the threshold
(often t > 2). The standard analysis approach has long
been to average the amplitude of the signal in a
given time window (and region(s) of interest). It could
be argued that if the time window is selected appropri-
ately, this approach may provide a solution to the lack
of synchronicity across participants. This may be true,
but only under the assumption that the time window
is selected appropriately. The variability across partici-
pants makes it difficult to ensure that this assumption
is satisfied. In earlier work, it was common practice to
select the time windows based on the visualisation of
the ERPs across conditions. In this approach, the time
window in which the difference was most visible was
analysed. This strategy drastically inflates spurious
findings.

In the analysis of behavioural responses, accuracy, or
response times, the statistical model ensures that the
effects generalise to other participants and items. This
is for instance achieved by using crossed mixed-effects
models with random terms for participants and items.
Analyses of ERPs (whether in the mass univariate frame-
work or using averages in one or more time windows),
do not allow us to determine whether the timing of
the effects generalises to other participants (or items).
A significant cluster or effect reveals that a sufficient
number of participants showed a similar effect in an
overlapping time window but does not inform us on
whether another sample of participants would show
the same effects in the same time window. The analysis
that we performed with random samples can provide
information on this issue and can be used to determine
the confidence around the significant time point where
the experimental effect is found. This method could be
used in future studies to examine the reliability of exper-
imental effects across samples. Note however that this
method requires that a larger group of participants be
tested in the first place.

We additionally acknowledge that our exploratory
analyses comparing fast and slow groups of participants
suffer from the same limitations that group analyses
suffer from: Even though these sub-groups are more
similar in terms of word production speed, we cannot
assume that neural activity is synchronised across par-
ticipants in each speed group. Moreover, the time
windows in which the ERPs of the participants in the
two groups show sufficient synchronisation for effects
to be visible at the group level might differ. In spite of
this limitation, our conclusions that inter-individual
differences in word production speed affect the timing
of EEG results remain unchanged.

In the present study, we asked at which stages in the
language production process we see inter-individual

18 P. FUHRMEISTER ET AL.



variability. Our findings suggest that there are differ-
ences across participants in late encoding processes
(though they do not rule out the possibility that differ-
ences also arise in earlier processes). As a consequence,
they warn against interpreting the timing of experimen-
tal effects in the response-aligned ERPs, but do not
inform us on whether caution should also be taken in
interpreting the timing of effects in the stimulus-
aligned ERPs. We speculate however that the same
warning applies there too. Previous studies have pro-
vided evidence that the timing of lexical access is vari-
able across participants (Laganaro et al., 2012).
Moreover, our findings suggest differences in slow and
fast participants in the stimulus-aligned ERPs too.
Finally, even if participants’ variability partially arises in
late encoding processes, variability is expected across
items. We can therefore expect that the timing of exper-
imental items in earlier time windows depends on the
set of items used in the experiment.

Conclusion

Inter-individual differences in behavioural tasks are
apparent in everyday language tasks and at the exper-
imental level, in the time needed to produce single
words in response to a picture. In the present study,
we tested whether individual variability emerges at
earlier or late stages of word production. Data from a
delayed naming task and EEG data suggest that the
differences in response times we observe across partici-
pants at least partially arise in late encoding processes,
presumably the phonetic encoding process. We further
describe a novel way of analysing ERP results, which
informs us on the contribution of between-speaker
variability to the group results.

Notes

1. Our initial plan was to perform single participant ana-
lyses of experimental effects from the EEG data and cor-
relate onset/offset of effects with response times. This
could not be done because too few participants
showed effects in the EEG data after correction for mul-
tiple comparisons. It is possible that the variability across
items was too high. For instance, the picture with the
fastest mean response time was produced 270 ms
faster than the picture with the slowest mean response
time. We also wanted to explore the relationships
between this timing and cognitive resources. In short,
we find that naming times are modulated by a
measure of sustained attention. However, given the
number of different measures related to cognitive
resources that we used, this relationship could be spur-
ious. We are currently working on a replication of these
findings.

2. This duration is shorter than it was for the picture-word
interference task. If these durations had been equated
between the two tasks, the trials for the delayed
naming task would have been much longer due to the
interval between picture presentation and the response
cue.

3. The decision to apply a baseline correction to the stimu-
lus-aligned ERPs was taken to keep with standard prac-
tices. We did not apply a baseline correction for
response-aligned ERPs because there was not an appro-
priate baseline. A baseline prior to stimulus onset would
have been too far away from the epoch, a baseline
before response onset would have been contaminated
by the experimental manipulation, and a baseline after
response onset would have been contaminated by
articulation processes. The decision to apply/not to
apply baseline corrections was taken before conducting
the analyses.

4. Upon visual inspection of the data, it seems that the
greater variance in the delayed task may have been
driven by a few outliers. Plots of this data are available
on our OSF page: https://osf.io/svjh5/.

5. We also performed the mass univariate analyses (with all
participants) averaging over items at the first level
(rather than participants) and found the same pattern
of results; however, we do not report these analyses in
the paper for the sake of brevity.

6. Note that the exact duration of these effects after correc-
tion for multiple comparisons depends on the statistical
“filter”. The TFCE method is for instance more conserva-
tive than a cluster-based permutation method. It is poss-
ible that with the latter, the effect would have been
larger.

7. We unfortunately did not have a priori estimates of
effect sizes to determine what sample size was needed
to detect effects in the EEG data. However, we con-
ducted power analyses for each contrast to determine
how many participants were needed to obtain at least
80% power to detect an effect of naming times in the
behavioural data. The power analyses were performed
using the simR library (Green & MacLeod, 2016), a
package that allows computing power functions for
mixed-effects models using simulations. These analyses
confirm that with half the participants, we still have a
high probability of detecting the semantic interference
and general interference effects (100% power reached
with less than 15 participants). For the phonological con-
trast, 23 participants (half of our sample) are needed to
achieve 80% power. We are aware that these power ana-
lyses inform us on the likelihood of detecting an effect in
the behavioural data (reaction times), not in the ERPs.
However, the experimental effects we are studying
with EEG are assumed to reflect behavioural effects,
and at the very least, we had enough power to detect
behavioural effects with 23 participants.
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